\qquad
Reg. No
Name. \qquad

B.TECH. DEGREE EXAMINATION, MAY 2014
 Sixth Semester

Branches : Applied Electronics and Instrumentation/Electronics and Communication/ Electronics and Instrumentation Engineering

AI 010 602/EC 010 602/EI 010 602—DIGITAL SIGNAL PROCESSING (AI, EC, EI)
(New Scheme-2010 Admission onwards)
[Regular/Improvement/Supplementary]
Time : Three Hours
Maximum : 100 Marks

Part A

Answer all questions briefly.
Each question carries 3 marks.

1. Determine if the system $y(n)=e^{x(n)}$ is time invariant or not?
2. Find the transfer function description of the system difference equation $y(n)=x(n)-b_{1} y(n-1)-b_{2} y(n-2)$, where $x(n)$ is input and $y(n)$ is the output.
3. Draw the frequency response characteristics for the ideal low-pass, band-pass and high-pass filters.
4. Write the equations specifying Barlett and Hamming windows.
5. Obtain the linear convolution of the sequences $x(n)=\{1,2,3\}, h(n)=\{-1,-2\}$ using circular convolution.

$$
(5 \times 3=15 \text { marks })
$$

Part B

Answer all questions.
Each question carries 5 marks.
6. Find the z-transform of $x(n)=n 2^{n} \sin \left(\pi / 2^{n}\right) u(n)$.
7. Solve the difference equation, where input sequence is $x(n)=3^{n-2}, n \geq 0$, using z-transform, where $2 y(n-2)-3 y(n-1)+y(n)=x(n)$ with the initial conditions: $y(-2)=\frac{-4}{9}, y(-1)=-\frac{1}{3}$.
8. Draw the cascade and parallel form realisations of $\frac{(4 s+28)}{(s+1)(s+5)}$.
9. In a band-pass filter, the desired frequency response is :

$$
\mathrm{H}_{\mathrm{d}}\left(e^{j w}\right)=\left\{\begin{array}{cl}
e^{-j w \tau}, & w_{c_{1}} \leq|w| \leq w_{c_{2}}<\pi \\
0, & \text { otherwise }
\end{array}\right.
$$

Obtain the filter coefficients for a rectangular window for
$\mathrm{N}=7, w_{c_{1}}=1 \mathrm{rad} / \mathrm{s}, w_{c_{2}}=2 \mathrm{rad} / \mathrm{s}, \quad \tau=\frac{(\mathrm{N}-1)}{2}$.
10. Compute the DFT of the sequence whose values for one period is given by $\tilde{x}(n)=\{1,1,-2,-2\}$.
($5 \times 5=25$ marks)

Part C

Answer all questions.
Each question carries 12 marks.
11. Calculate the frequency response for the LTI system representation below :
(a) $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$.
(b) $\quad h(n)=\delta(n)-\delta(n-1)$.
(c) $h(n)=(0.9)^{n}\left(e^{j \pi / 2}\right)^{n} u(n)$.
Or
12. A causal LTI system is described by the difference equation $y(n)-a y(n-1)=b x(n)+x(n-1)$ where ' a ' is real and less than 1 in magnitude. Find a value of ' b ' $(a \neq b)$ such that the frequency response of the system satisfies $\left|\mathrm{H}\left(e^{\mathrm{jw}}\right)\right|=1$ for all w.
13. For the LSIV system $\mathrm{H}(s)=\frac{z-a^{-1}}{z-a}$, where ' a ' is real.
(a) For what range of values of ' a ' is the system stable?
(b) If $0<\alpha<1$, plot the pole-zero diagram and shade the ROC.
(c) Show graphically in the z-plane that this system is an all pass system.
14. Find $\mathrm{H}(z)$, and the frequency response of $h(n)=\left(\frac{1}{2}\right)\left[\left(\frac{1}{2}\right)^{n}+\left(\frac{-1}{4}\right)^{n}\right] u(n)$ substituting $z=e^{j \omega}$. Locate the zeros and poles in the z-plane.
15. (a) Determine the direct form realisation of the system function

$$
\mathrm{H}(z)=1+2 z^{-1}-3 z^{-2}-4 z^{-3}+5 z^{-4} .
$$

(b) Obtain the cascade realisation of the system function $\mathrm{H}(z)=1+\frac{5}{2} z^{-1}+2 z^{-2}+2 z^{-3}$.

Or

16. Design an ideal low-pass filter with frequency response

$$
\begin{array}{rlrl}
\mathrm{H}_{d}\left(e^{j w}\right) & =1 & & \text { for }-\frac{\pi}{2} \leq w \leq \frac{\pi}{2} \\
& =0 & \text { for } \quad \frac{\pi}{2} \leq|w| \leq \pi .
\end{array}
$$

Find the values of $h(n)$ for $\mathrm{N}=11$.
17. Design a filter with $\mathrm{H}_{d}\left(e^{-j w}\right)=e^{-j 3 w}, \frac{-\pi}{4} \leq w \leq \frac{\pi}{4}$

$$
=0, \quad \frac{\pi}{4}<|w| \leq \pi .
$$

Use Hanning window with $\mathrm{N}=7$.

> Or
18. Using Bilinear Transformation design a digital band-pass Butterworth filter with the following specifications:
Sampling frequency $f=8 \mathrm{kHz}$
$\alpha_{\mathrm{p}}=2 \mathrm{~dB}$ in the pass-band $800 \mathrm{~Hz} \leq f \leq 1000 \mathrm{~Hz}$
$\alpha_{\mathrm{s}}=20 \mathrm{~dB}$ in the stopband, $0 \leq f \leq 400 \mathrm{~Hz}$ and $2000 \leq f \leq \infty$.
19. Find the output of $y(n)$ of a filter whose impulse response in $h(n)=\{1,1,1\}$ and input signal $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using (a) overlap-save method; and (b) overlap-add method.
Or
20. Find the DFT of a sequence $x(n)=\{1,2,3,4,4,3,2,1\}$ using DIT algorithm.

$$
(5 \times 12=60 \text { marks })
$$

